Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions.

نویسندگان

  • Devin L Shaffer
  • Laura H Arias Chavez
  • Moshe Ben-Sasson
  • Santiago Romero-Vargas Castrillón
  • Ngai Yin Yip
  • Menachem Elimelech
چکیده

In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Life Cycle Water Consumption and Wastewater Generation Impacts of a Marcellus Shale Gas Well

This study estimates the life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well from its construction to end of life. Direct water consumption at the well site was assessed by analysis of data from approximately 500 individual well completion reports collected in 2010 by the Pennsylvania Department of Conservation and Natural Resources. Indirect water consu...

متن کامل

Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination

There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine de...

متن کامل

Forward osmosis: Novel desalination of produced water and fracturing flowback

Treatment and reuse of oil and gas (O&G) production wastewater in a cost-effective and environmentally sound manner is critical for sustainable industrial development and for meeting stringent regulations. High salinity, free and emulsified hydrocarbons, silts and clays released from producing formations, and process additives common in O&G drilling wastewater render many conventional treatment...

متن کامل

Omniphobic Polyvinylidene Fluoride (PVDF) Membrane for Desalination of Shale Gas Produced Water by Membrane Distillation.

Microporous membranes fabricated from hydrophobic polymers such as polyvinylidene fluoride (PVDF) have been widely used for membrane distillation (MD). However, hydrophobic MD membranes are prone to wetting by low surface tension substances, thereby limiting their use in treating challenging industrial wastewaters, such as shale gas produced water. In this study, we present a facile and scalabl...

متن کامل

Carbon footprint of water reuse and desalination: a review of greenhouse gas emissions and estimation tools

As population and water demand increase, there is a growing need for alternative water supplies from water reuse and desalination systems. These systems are beneficial to water augmentation; however, there are concerns related to their carbon footprint. This study compiles the reported carbon footprint of these systems from existing literature, recognizes general trends of carbon footprint of w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 47 17  شماره 

صفحات  -

تاریخ انتشار 2013